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INFLUENCE OF HEAT SPREAD IN THE MEASUREMENT LAYER ON THE 

ACCURACY IN MEASURING LOCAL HEAT FLUXES BY THE GRADIENT METHOD 

E. N. Voznesenskii and V. I. Nemchenko UDC 536.629.7 

INTRODUCTION 

One of the most widely known methods of measuring heat flux is the steady gradient meth- 
od, or the method of an auxiliary wall [i]. But this method, despite its high sensitivity 
and relative simplicity, is used relatively rarely in model gas-dynamic experiments. Data 
are practically absent on the use of the method of an auxiliary wail in heat-transfer re- 
search carried out on models in low-density aerodynamic installations. The main reasons pre- 
venting its extensive use in measurements of such a kind are the inadequate spatial resolu- 
tion of individual calorimeters at the relatively small dimensions of the models themselves 
and of the regions of action of the gas stream, as well as the appearance of temperature 
"steps" at the surface of the test model at the calorimeter mounting points in a number of 
cases. These drawbacks are eliminated to a considerable extent, however, when the method of 
an auxiliary wall is carried out in the installation proposed in [2] for bodies having a plane 
or slightly curved surface. The idea of the proposed realization consists in the following. 
The body of the model, thermostatically controlled in some way, is covered by a layer of ma- 
terial of low thermal conductivity (the measurement layer) so thin that the heat spread in it 
becomes insignificant at the places most important from the aspect of heat transfer. Then the 
local temperature drop between opposite sides of the layer, when the thermal conductivity ~ = 
const of the material is known, is proportional to the local value of the incident heat flux, 
and the problem is reduced to recording this temperature drop with the required accuracy. The 
distribution of the temperature difference between the surfaces of the measurement layer is 
measured with differential microthermocouples, the hot junctions of which are placed on the 
outer surface of the layer in a certain way which allows for the heat outflow along the therm- 
,couple leads [2]. 

Consequently, in the realization of the method of an auxiliary wall in the given variant 
an important point, along with the question of the correct placement of the differential 
thermocouple junctions discussed earlier in [2], is the allowance for the influence of tan- 
gential heat fluxes in the measurement layer and the determination of the error introduced 
by these fluxes into the measurement result. A correct estimate of the latter would make it 
possible to select the required thickness of the measurement layer corresponding to the con- 
ditions of a specific experiment. The effects of heat spread have been analyzed earlier main- 
ly for nonsteady methods of measuring heat fluxes [3, 4]. The problem of heat spread has ev- 
idently not been raised in general form in application to the method of an auxiliary wall. 
Only individual particular examples are known [i, 2]. 

In the present work an attempt is made to derive, from sufficiently general premises, 
approximate functions connecting the error in the measurement of the heat-flux distribution 
due to heat spread in the measurement layer with the parameters of the layer and the charac- 
teristics of the quantity being measured. The suitability of the equations obtained for prac- 
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tical use is tested by comparing the approximate errors calculated from these equations with 
the exact errors for a number of model problems of heat conduction admitting of an analyti- 
cal solution, as well as with experiment. 

In the specific installation of [2] a thin measurement layer was glued to a thermostat- 
ically controlled body. In addition, in some cases a special protective film can be deposit- 
ed on the outer surface of the measurement layer to protect the thermocouple junctions and 
eliminate hydrodynamic perturbations. Thus, in setting up the problem of heat spread for the 
method of an auxiliary wall one must keep in mind that a real covering is multilayered, gen- 
erally speaking. 

w With allowance for the remarks which were made, let us consider the steady-state 
problem of heat conduction in a thin-layered composite covering deposited onto a plane or 
slightly curved isothermal surface and consisting of three uniform layers. The thermal con- 
tact between all the layers is taken as ideal. We designate the thickness and coefficient of 
thermal conductivity of the inner layer (layer i) as h, and X x, respectively, the same param- 
eters for the central layer (layer 2), filling the role of the measurement layer, as h~ and 
Xa, and those for the outer layer (layer 3) as ha and la. We take the orthogonal coordinate 
system in the usual way: the x and y coordinates along the isothermal surface and the z co- 
ordinate along the normal to it. 

Then the temperature field within each layer can be described by a Laplace equation in 
the form 

# ~ T  O~T O~T 
AT = ~* + 0-~- + 0-W = 0" (1.1) 

Let a heat flux qw(x, y) fall on the outer surface of the covering, with the function 
qw(x, y) being continuous. The boundary conditions of the problem and the conditions for 
joining the solutions at the transitions from layer I to layer 2 and from layer 2 to layer 3 
are written in the form 

z = 0, T (x, y,0) = To = const;  ( 1 . 2 )  

z = h ~ ,  T ( x , y , h ~ - - O ) =  T ( x , y , h ~ q - O ) =  T , ,  ( 1 . 3 )  

~'T I OT I �9 
~'~ "~z h, - o = k z  ~ h,+o ' 

z = h r ,  , T (x, y,  hl~ - -  O) = T (x, y ,  hl~ + O) = T2, ( l o  4 )  

Z'T 
i 

I = x or[ ; X2 ~ h , , - 0  ~ ~ Z I h , , + 0  

c~T I 
z = hLo~, ~ ~-z h,= = q~ (x, y), ( ! .  5)  

w h e r e  h , ,  = h ,  + .h~; h , , ~  = h ,  + h ,  + h~ .  The f a c t  t h a t  t h e  d i r e c t i o n s  o f  t h e  Oz 
the active heat flux are opposite is taken into account in (1.5). 
layers 2 and 3 leads to the following equations : 

axis and 
Integration of (1.1) across 

. , ~T aT 
~'a A ' T d ~  ~ ,,3-~-f-z r - -  3-~-f = 0; ( 1 . 6 )  

h12 |h,2z 

OT ~., [ A ' T d ~ + ~ , , ,  OT --~2~7- = 0 ;  (1.7) 
- ; ,  " ~  h . - o  ~ jh,+o 

o r  = o, ( 1 . 8 )  

where h' = ~2/~x2 + ~2/8y2. 
ror r due to spreading: 

! F T 2 -  1"1 

From (1.4)-(1.8) one can obtain an exact expression for the er- 

[ ' A ' T d z - -  ~'~ [ dz  A ' T d ~  . ( 1 . 9 )  w ~.3 I A ' T d z , - - 1 . ,  ,~ q,,. (x,  y) - -  q~o (z, y) t. hb_ - .~, h.._ i:~ i~, 
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Let the total thickness h,2a of the covering be such that the heat spread in it is small ev- 
erywhere in the region under consideration (i.d., ~ << i). This means that the temperature 
distribution over the z:coordinate within each layer is nearly linear, and, moreover, by vir- 
tue of (1.2)-(1.4), 

~l T~hlT~ ~2 ~ l . ~  ~ST~ hs T~ , 

w h e r e  Ta = T ( x ,  y ,  h , 2 a ) .  E v a l u a t i n g  t h e  i n t e g r a l s  i n  Eq.  ( 1 . 9 )  on  t h e  b a s i s  o f  t h e s e  c o n -  
s i d e r a t i o n s ,  we obtain a sufficiently simple approximate expression for the value, 

e ~ - -  1 - - ' 3  ' ' , .., j x 

(i.lo) 

The functions obtained make it possible to trace the influence of various parameters of the 
covering on the degree of heat spread and thereby to estimate the thicknesses of the protec- 
tive, glue, and measurement layers assuring a possible error satisfying the demands of a spe- 
cific investigation. 

Thus, in order to neglect the heat spread due to the presence of the glue and protective 
layers one must satisfy the conditions 

~3h~<<~h2,~2/h~<<~/hl,  h3<<h.2. 

Then  

e ~ ~2h2 A' (Te -- T~) ~ h~ A' (T~ -- Tx) (I. ii) 

3 qw(x,y) 3 T 2 - -  T 1 

In those cases when the protective layer is absent but the thickness of the glue layer is 
comparable with the thickness of the measurement layer, the error due to spreading is estim- 
ated from the equation 

e ~  3q w (x, y) i -~T~-~2I  (ru - -  I'1) ~-. t -~T~ . -~J  T-~z'---T-~ " (1.12) 

Equations (1.10)-(1.12), depending on the relations between the parameters of the layer com- 
prising the covering, can be used for an approximate calculation of the error on the basis 
of measurement results. Below we use only Eq. (I. ii) and the consequences following from it, 
as corresponding most closely to the properties of a real covering [2]. If the function 
qw(X, y) is twice differentiable, the unknown error can be calculated approximately from the 
following equation, equivalent to (i.ii): 

e ~ _h~ A'qw (z, y) (i. 13) 
3 qw (z, y) 

This equation is convenient to use for comparing approximate errors due to heat spread with 
exact errors obtained from the solution of heat-conduction problems. 

The equations presented (including those pertaining to a multilayer covering) remain 
valid everywhere for a layer of finite size having a thermally insulated side surface. With 
side boundary conditions of a different character their use is admissible for sections of the 
measurement layer sufficiently remote from its edges. In practice, this remoteness comprises 
five thicknesses of the measurement layer [5]. 

A general result following from Eq. (i.ii) or (1.13) is important for practical purposes: 
When the thickness of the measurement layer is very small, the error due to spreading is pro- 
portional to the square of the thickness of this layer and has the order of magnitude 
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e N (h., /L,)  ~, ( 1 . 1 4 )  

where L, is the characteristic geometrical size of the nonuniformlty of the active heat flux. 

This is a major circ,!mstance for the selection of the thickness of the measurement layer 

in the construction of a model. 

w To test the correctness of the estimates given above for the error of the method 
due to heat spread, let us turn to two-dimensional problems of heat conduction in uniform 
flat plates having an analytical solution, with boundary conditions corresponding to the work- 
ing conditions of the measurement layer. First we consider the plane problem 

09T 0~T 
oz--x + 0-~ = O, (2.1) 

OT OT ~ OT ( x \ 
T (x, O) = T l = c o n s t ,  ~z L_=o=~ l= f f iL :  O, O'~z z=h : qw .-'L ) 

(h and L are the thickness and length of the plate, respectively). From the solution of this 
mixed boundary-value problem, which can be obtained by the method of separation of variables, 
we obtain the following equation for the quantity l(Ta- T~)/h = XATw/h: 

1 i 

AT,. ~ ~ - - ~ - ~  cos ~tnxO .I q w ( ~ ) c o s ~ n ~ d ~ ,  (2.2) x-~-= q.(Dd~+2 thu.h0 
0 n = l  0 

where x ~ = x/L; h ~ = h/L; Ta = T(x, h); AT w = T=-- T,, and L is the length of the plate. 
Numerical calculations of the series of (2.2) were made on a computer for the function 

qw(X ~ = (Ax~ ~ exp ( - - A x  ~ ~ 2) ( 2 . 3 )  

with A = 20, 30, and 40 and h a = 0.01, 0.02, 0.03, 0.04, and 0.05. % 

The exact errors Ee on the basis of the results of these calculations are presented in 
Fig. la, b for A = 20, and 40, respectively. It is seen, first of all, that a decrease in 
the thickness of the plate leads to convergence of the values of %&Tw/h and qw(X ~ at all x ~ 
and, secondly, that the smoother the function qw(X~ smaller the value of the parameter 
A), the faster %ATw/h converges to qw(X~ This means that with a decrease in the thickness 
of the plate the transverse temperature profiles in it approach linear profiles, and hence a 
tendency toward convergence of the approximate and exact errors Cap and Se must occur. 

Such a relationship, confirming the correctness of the error estimates derived in Sec. 
i, is actually observed~ Table I, which contains the data of a calculation of the errors for 
a series of values of x ~ from the vicinity of the maximum qw(x ~ = qmax, which is the most 

interesting in applications, as a rule, serves as an illustration of this. The values of Cap 
are calculated from Eq. (1.13). A determination of the order of magnitude of ~ from Eq. 
(1.14) indicates that it coincides with the actual, values in the entire range of h ~ for the 
vicinity under consideration. The smallest of the distances from the point of the maximum 
value of qw(X ~ to the point at which qw(X ~ = 0.1qmax is taken as the characteristic size L,. 

Now let us turn to the axisymmetric case. The statement of the problem is analogous to 
(2.1): 

0~T . i aT 02T 0, 

i OT " =0, = q w  T ( r , O )  = T 1 = const, ~r~=R ~-!z=h \/R-" 

Here h and R are the thickness and radius of the flat disk, respectively. 
a heat-flux distribution function we take the function 

q~ (r ~ = ~ [0.4028 + Yo (3.8317r~ 

As an example of 

(2.5) 

where Jo(x) is a zero-order Bessel function of the first kind; r ~ = r/R. Solving the problem 
(2.4) with allowance for (2.5), we obtain 

%l~e calculations were made by V. A. Buzhinskii. 
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TABLE 1 

A=20 I A=&0 

- e r  - ~ap 
x~ Sap/~e ho -- er -- Sap &ap/s e xo 

o,s 

0,8 

0,4 

a,z 

o 

0,05 

0,07 

0,t0 

0,0327 

0,0530 
0,0645 
0,070t 

0,0390 
0,0632 
0,0892 
0,ll t6 

0,0267 
0,0566 
0,0887 
0,1201 

0,0533 
0,t200 
0,2133 

0,3333 

0,0446 
0,t004 
0,1786 
0,2790 

0,0267 
0,0600 
0,1067 
0,t667 

1,630 
2,264 

3,307 
4,755 

t,144 

t,589 
2,002 

2,500 

t,000 
i,060 
1,203 
t,388 

t.10 -3 

2. t0 -3 

3.t0-~ 
4.*t0 -2 
5.10 -2 

1.10 -2 
2-10 -2 
3.10 -3 

4. t0 -~ 
5. !0 -2 

1.t0-~ 
2- t0 .2 
3.10 -2 
4.10-2 

5.t0-2 

0,0330 
0,0897 
0,t238 

0,1455 
0,1638 

0,0336 
0,0966 
0,i504 
0,1910 
0,2233 

0,03i0 
0,0883 
0,i449 
0,t919 
o,2294 

0,0504 
0,2015 
0,4543 
0,8059 

1,2592 

0,0383 

0,t533 
0,3450 
0,6133 
0,9582 

0,0267 
0,1067 
0,2400 
0,4267 

9,6668 

i,527 
2,246 
3,662 
5,539 
7,687 

i,i40 
1,587 
2,294 
3,2tl 
4,291 

0,861 
t,208 
1,656 
2,224 
2,907 

0,03 

0,04 
L 

0,05 
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TABLE 2 

r" 

0,261 

0,496 

0,757 ] 

ATto 

(h o 

h* 

2. t0  -2 

6 .10 -3 

t .  10 -~ 

~e 

--t ,3922. t0 -3 
--t ,2299. t0 -3 
- -  3,2950.10 -3 

r 

-- t ,3955.t0 -a 
-- t ,2559.t0 -3 
--3,4887.t0 -3 

Sad  F-,e: 

t,0024 

t,02t2 

t,0588 

2. t0 -3 
6.10 -2 

t .  t0 -1 

- - t ,279t .  t0 -a 
A.i,1303.10 -3 
--2,9924. t0 -~ 

--1,2825.10 -a 
- - t , t542 . t0  -~ 
-23,2062. tO-g 

1,0026 
t,02t2 
1,0715 

2 . t 0  -3 

6 .10  -3 

1.10 -1 

2.10  -3 

6 .10  -3 

1.10 -x 

--0,8032.t0 -3 
--0,7094. iO -9" 
--t,9020.10 -8 

2,4519.10 -a 
2,1677. t0 -3 
5,8084.10 -2 

--0,8050- t0 -3 
--0,7252.10 -3 
--2,0t45.10 -2 

2,4599.10 -3 

2,2t39. iO < 
6,i5t0- t0 -2 

1,0032 
t,0223 
1,0592 

t,0032 
1,02t3 
t,0590 

= 1 . 4 ~ [ 0 . 4 0 2 8  ' t h 3 " 8 3 t 7 h ~  -w ~ ~o(3-8317r~ 

= h / R ;  T~ = T(r  ~ h~ ATw = T 2 - -  TI) .  
(2.6) 

The results of a calculation of r e from (2.5) and (2.6) for h ~ = 2-10 -2 , 6.10 -2 , and i.i0 -~ 
and of qw(r") and XATw/h for h ~ = I.i0-* are shown in Fig. ic. The approximate and exact 
values of the error due to heat spread and their comparison are given in Table 2. 

One can see that the properties of the behavior of the approximate and exact values of 
the error noted in the discussion of the plane problem are also retained here, with consid- 
erably better agreement between the data of the approximate and exact calculations occurring 
in the latter case. The result obtained is not accidental and is easily explainable from 
the standpoint of Sec. i. Actually, in the plane problem the function (2.5), in contrast to 
(2.3), is sufficiently smooth, since L, ~ R for it and h~L, << i in all cases, whereas for 
the function (2.3), AL, << L for the chosen values of the parameter and h/L, ~ i in the major- 
ity of the variants. 

An experimental study of the influence of heat spread in the measurement layer on the 
accuracy in measuring the heat flux was carried out in a vacuum wind tunnel in application 
to the problem of the interaction of a strongly underexpanded jet of heated gas with a flat 
barrier. It is known that in this case a heat-flux distribution d~stinguished by a large 
nonuniformity is realized at the surface of the barrier with a characteristic maximum being 
present [6]. 

The barrier model consisted of a hollow copper body, with inlets for the thermostatic- 
control liquid, to which interchangeable plastic plates from i-i0 -s to 4.4.10 -s m thick were 
glued with epoxy resin. The thickness of the resin layer (its thermal conductivity is close 
to the thermal conductivity of plastic [i]) was about i.I0 -~ m. The plastic plates, playing 
the role of the measurement layer, were equipped with differential and absolute (to determine 
the temperature of the inner surface of the layer) microthermocouples. The model was set up 
in the tunnel chamber with the working plane parallel to the axis of the nozzle -- the jet 
source- at a distance s ~ = s/d a = 6 from it, where d a and s are the dimensional diameter of 
the exit cross section of the nozzle (in the experiments d a = 1.65-i0 -s m) and the dimension- 
al distance from the nozzle axis to the surface of the model, respectively. In the course of 
the experiments the required thickness of the measurement layer was sought by the method of 
successive approximations. 

The results of an analysis of the experiments for the point qmax are presented in Fig. 
Id, for one of the modes of tunnel operation [2]. The dimensionless thickness of the meas- 
uremen~ ~ayer is laid out along the abscissa, while a value proportional to the ratio of the 
measured and actual heat fluxes is laid out along the ordinate (Too is the stagnation temper- 
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ature of the jet and hmi n is the least thickness of the plastic plate out of those used in 
the experiments). The curve plotted from the test data not only clearly shows the weakening 
of the influence of heat spread in the measurement layer with a decrease in its thickness, 
but it testifies in favor of the equations of Sec. 1 at the same time. For example, an estim- 
ate of the error due to heat spread on the basis of Eq. (1.14) using data from [2] on the dis- 
tributions of qw over a model with a plastic measurement layer 0.94.10 -3 m thick gives a val- 
ue on the order of 1.5% for it, which agrees fully with the behavior of the curve in Fig, id, 
near the corresponding value of the coordinate h/da/~ = 0.247. 

w Cases of discontinuous heat-flux distributions are particularly interesting. Heat 
spread is always significant at points of discontinuity (we are talking about discontinuities 
such that the jump in the heat flux is comparable with the arithmetic mean of the heat fluxes 
at the edges of the discontinuity), and it is important to know the dimensions of that vicin- 
ity outside of which the influence of the discontinuity can be neglected. In order to iso- 
late this phenomenon in pure form, we again consider the steady-state problem of heat conduc- 
tion for a plate in the plane (2.1) and symmetric (2.4) statements with a heat flux at the 
surface of the plate in the form of a step function, 

|i at O < : x < a ,  O ~ < r < a ,  
qw (x)' qw (r) - -  IO at  a < x ~ L,  a < r <~ R ,  

where a is a parameter determining the geometrical dimensions of the region of action of the 
discontinuous heat-flux distribution. The results of its solution* and an experimental test 
of one of the variants (h/a = 0.24) for the plane case are presented in Fig. 2a. There is a 
diagram of the experiment in Fig. 2b. A heat flux of almost ~-shaped form was created by the 
thermal radiation of the blackened lower face of the irregularlyshaped body i, made of cop- 
per and equipped with a resistance heater 2. The position of this body was fixed with the 
help of a thermally insulating gasket 3 inside the slot of the cooled platform 4 in such a 
way that the emitting face of the body was set flush with the lower surface of the platform. 
The walls of the slot were coated with a reflecting Mylar film 5 with a coefficient of reflec- 
tion of 0.95-0.98. 

The platform was moved along the blackened surface of the plastic measurement layer. 
The movement of the platform relative to the monitoring differential microthermocouple 6 was 
determined with a micrometer 7. The distance between the plane of the emitting face and the 
surface of the model was 0.3.10 -s m, the dimensions of the emitting face were 7.9.10 -s m x 
70.i0 -s m, and the thickness of the plastic layer was 0.95.10 -s m. The experiment was car- 
ried out under vacuum conditions. The agreement of its results with the calculation is ful- 
ly satisfactory (points in Fig. 2a). A certain discrepancy observed outside the zone of ac- 
tion of the heat flux is evidently explained by the unavoidable departure of the form of the 
realized heat flux from a ~ shape. The results of calculations for a plate of finite size 
with h/L = 2.10 -z (solid curves) in the plane case and h/R = i-i0 -= (dashed curves) in the 
axisymmetric case are presented in Fig. 2a. Calculations of the plane problem for a plate 
of infinite size (the value of h is fixed) were made in addition. Their results coincide 
with those presented in the first three to four significant figures. There is no doubt that 
such correspondence also occurs in the axisymmetric problem. 

*The computer calculations of this problem were made by V. E. Isaev. 
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In comparing the solutions of the plane and axisymmetric problems we note that with an 
increase in the parameter a (i.e., with an increase in the characteristic spatial dimension 
of the heat flux relative to the thickness of the measurement layer) the difference between 
them disappears. For h/a = 0.125, in particular, the two solutions coincide with an accuracy 
of about 2% when x, r < a. 

Finally, on the basis of an analysis of the calculations performed, one can formulate 
the following general judgement about the influence of discontinuities of heat flux on the 
degree of heat spread in a measurement layer: The error caused by a discontinuity in heat 
flux becomes less than 0.01 of the size of this discontinuity in absolute value at distances 
Ax, Ar > 3h from the point of the discontinuity, and hence they can be ignored in practical 
estimates. Thus, with the appropriateeholce of the thickness of the measurement layer one 
can measure discontinuous heat-flux distributions, with satisfactory accuracy for practical 
work, everywhere except for the rather small vicinity of each discontinuity determined above. 

In conclusion~ we present as an example the results of a measurement of the heat-flux 
distributions on a flat barrier with a strongly underexpanded jet acting on it, obtained by 
the method of an auxiliary wall in a vacuum wJmd tunnel. A model with a plastic measurement 
layer 0.95-I0 -s m thick and the measurement system described in [2] were used. The flat bar- 
rier was placed in the field of flow of a strongly underexpanded air jet with a Mach number 
Mageo m = 3.25 at the nozzle cut without allowance for the boundary layer. The diameter of 

the nozzle exit cross sectlo~was d a = 3.66-10 -.3 m. The pressure and stagnation temperature 
of the jet were P0 = 7"i0~-_ 7-2"10~-Pa and Too = 400~ respectively, the range of values of 
the temperature factor was ~ = T=/Too = 0.72-0.81, the pressure of the working chamber out- 
side the jet was p= = 1.3.10" Pa, = - 0 and 30 , and s ~ = 2 and 4 (s o = s/d a and ~ is the an- 
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gle between the nozzle axis and the working surface of the model). The heat-load distribu- 
tions obtained for these conditions are shown in Fig. 3a-c. All the values of the coordinates 
x and y and the distances s in these graphs are normalized to the value d a. The presence of 
a maximum of qw, about which we spoke earlier, is characteristic of all the distributions 
presented. Its height grows both with an increase in e and with a decrease in s~ as s ~ in- 
creases the maximum of qw shifts downstream (see Fig. 3a). The maxima of the longitudinal 
side distributions of qw (along lines of yO = const) shift downstream with an increase in yO 
(see Fig. 3b, c). Thus, the same qualitative properties are inherent to heat-flux distribu- 
tions on a flat surface as to distributions of force loads [7]. 

Estimation calculations of the error due to heat spread in accordance with (i.14) give 
a value on the order of 1% for all the cases presented. The total error of heat-flux meas- 
urements comprises about 7% in the present experiments (.owing to errors in the calibration 
of the microthermocouples and in the determination of the coefficient of thermal conductivity 
of the material of the measurement layer). 

The results presented above show that the method of an auxiliary wall, in the statement 
proposed in [2], allows one to measure, with good accuracy and high localizability, the dis- 
tributions of small heat fluxes over models in low-density wind tunnels. 
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